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Abstract. Expressions for the longitudinal and bulk viscosities have been derived using Green
Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation
functions. The time evolution of stress autocorrelation functions are determined using the Mori
formalism and a memory function which is obtained from the Mori equation of motion. The
memory function is of hyperbolic secant form and involves two parameters which are related
to the microscopic sum rules of the respective autocorrelation function. We have derived
expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk
stress autocorrelation functions. These involve static correlation functions up to four particles.
The final expressions for these have been put in a form suitable for numerical calculations
using low- order decoupling approximations. The numerical results have been obtained for
the sum rules of longitudinal and bulk stress autocorrelation functions. These have been
used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal
stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and
temperatures. We have compared our results with the available computer simulation data and
found reasonable agreement.

1. Introduction

A considerable amount of work has been done during the last three decades to study the
transport coefficients of classical dense fluids. This has been possible owing to the combined
efforts made as a result of experiments, computer simulations and theories. However, in
most of the work attention has been paid to the study of the coefficients of self-diffusion
and shear viscosity. The bulk viscosity of fluids which has relevance to the behaviour of
fluids under rapid loading conditions has been least investigated. This may be due to the
complications involved in its study. For example experimentally it cannot be measured
directly. However, during the last decade this property of the fluids has been investigated
by computer simulation techniques [1-3]. At present, sufficient information regarding the
density and temperature dependences of bulk viscosity has been made available; hence
the predictions of theories can be checked. For example the Enskog theory in which
multiparticle correlated collisions are neglected overestimates the bulk viscosity by a factor
of 2 and predicts the ratio of bulk viscosity to shear viscosity to be around 1.2 near
solidification. However, molecular dynamics (MD) simulations on hard spheres produces a
value for this ratio of around 0.34. In recent years, Brogetl [2] using the kinetic theory
approach predicted a bulk viscosity which is at least 60% different from their simulation
values. In fact at present there exist no tractable kinetic theory which can be used to predict
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the bulk viscosity even for hard spheres and which is in agreement with the simulation data.
The second approach which has now been used more frequently to study the transport and
dynamics of the fluids is based on time correlation function (TCF) formalism. The time
evolution of the TCF is generally calculated by introducing the memory function within the
Mori memory function formalism [4,5]. The advantage of this approach is that one can
introduce an approximate form [6] of the memory function and can still preserve a number
of properties of the TCF. Using this approach we have studied [7-10] the coefficients
of self-diffusion, shear viscosity and thermal conductivity of Lennard-Jones (LJ) fluids.
However, there exists no similar work on the calculation of bulk viscosity and hence of
the respective TCF of interest. Therefore, in this paper we have studied the time evolution
of the longitudinal stress autocorrelation (LSAC) and bulk stress autocorrelation (BSAC)
functions and corresponding viscosities. We first derive expressions for the first three non-
vanishing sum rules of the LSAC and BSAC functions. These have been put in a form
suitable for numerical calculations. The numerical results have been obtained for the LJ
potential at various densities and temperatures. These sum rules and a hyperbolic secant
form of the memory function which is derivable from the Mori equation of motion have
been used to study the longitudinal and the bulk viscosities of the LJ fluids. The results
obtained have been compared with the simulation data of Heyes [1]. It is found that our
results for the longitudinal viscosity are in good agreement with the simulation data. The
bulk viscosity has been calculated using the sum rules of the BSAC function and also using
its relation with the longitudinal and shear viscosities. The two methods have been found
to provide similar results. The results for the bulk viscosity have been compared with the
simulation data and are found to be in reasonable agreement except for densities close to the
triple-point density. It is also noted that our approach predicts a bulk viscosity proportional
to the square of the density in low-density limits which is in accordance with the predictions
of kinetic theory.

The layout of the paper is as follows. In section 2 we present some of the general
expressions. In section 3 we derive expressions for the sum rules of the LSAC and BSAC
functions. In section 4, we derive the expression for the memory function. The expressions
for the the time evolution of the TCF and viscosities are also presented in section 4. In
section 5 we present the calculations and results. In section 6 we summarize and conclude
the work.

2. Generalities

The Green Kubo expression which relates the LSAC functiép) to the longitudinal
viscosity n; is given by

1 o0
n = %773 +np = VTBT A dlSZ(t) (1)
where
') = 307 (1)J““(0)) )
with
J“b=i<7pjapjh+r~ F; )—5 vir+ 22 E— i 3)
=~ m jal'jb ab E)E

wherea and b run overx,y andz. In the above equations;., r;, and Fj, are the
ath components of velocity, position and force, respectively, on jthe particle. The
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angular brackets represent a canonical ensemble avePadé.kp, T andm are the average
pressure, volume, Boltzmann constant, temperature and mass, respectively. The current
chosen above is suitable for the canonical ensemble used in the present work. Expressions
for E and P in terms of pair potential/ () and pair distribution functiog(r) are given as

E= gNkT n %/ dre(nU ) @)
PV:kBT— @/OO drdU(r)r3g(r) (5)
3 0 dr

The second Green Kubo relation [11] which relates the bulk viscasitgtirectly to the
so-called BSAC functiors2(¢) is given by

— 1 > B
s = VkBT/O dr $*(r) (6)
where
SPD =4 D (DI 0. (7)
a b

The shear viscosity)s, which is related to the transverse stress autocorrelation (TSAC)
function, is given by

1 s
ns = VkBT/O drS* (1) (8)
where
$'(1) = § ) (I O). ©)
a#b

Expressions (1), (6) and (8) are derivable from the Navier—Stokes equation and therefore
must be equivalent. However, this equivalence is not clear from the above expressions
owing to the appearance of different combinations of produétsand J**. Therefore, in

order to look for this equivalence and with the aim of studying the time-development of
stress autocorrelation functions, we start by examining the short-time properties of these
functions. The short-time expansion 8f¢) is given as

2 4

%+54%_... (10)
where Sy, —S, and S, are the zeroth-, second- and fourth-order sum rules of the stress
autocorrelation function in general. The expressions for the sum rules of the TSAC function
has already been given in our earlier paper [8]. In the next section we present the results

for sum rules of LSAC and BSAC functions.

S(it)=58— 52

3. Expressions for sum rules

3.1. Longitudinal stress autocorrelation function

The expressions for the zeroth-order sum rules of the LSAC funcfjpis obtained by
putting s = 0 in equation (2). The expression thus obtained is given as

2mn
—k
15

dP\? . dp (- 3
V- (6(kgT)?> — E?) +2PV?—— (E—k T). 11
+< dE>((B ) )+ aE ks (11)

o0 dp
SL = 4(kpT)? + BT/ dr r*g(r)(3Ar? + 5B) — SVE(kBT)Z —(PV)?
0
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The expression fosé is obtained by evaluating the thermodynamic average:
S5 = (ST (0))i=o (12)

whereJ**(¢) is first time derivative of/**(r). From the expression faf**(¢), one expects

that the expression fa$, should contain static correlation up to four particles. However,

it has been found that the four-particle contributions turn out to be zero under the pair
potential approximation and successive use of the Yvon theorem:

e, \ o [dfe)
< dr f(”>"‘”< dr >

where f(r) is a regular function of-. The final expression fo§, involves only the static
pair and the triplet correlation functions. The expression obtainedéfdrs given as

Sl _ 47TkBTn o0
27 15m

r2g(r) dr[r?(5B? + 3A%r* + 6ABr?)+ ks T (18Cr*+1654r2 4 225B)]

00 00 1
+ / r?dr / rZdry / dBiga(r, r1)palrri(Ar? + B)(A1r? + 5B1)]
0 0 -1

+2B2AA17%, (13)
In the above expressions and in what follows$;) and g;(r, r1) are the static pair and
the triplet correlation functions and
1dU(r) 1dB
B = A=

r dr T ordr

1dA 1dA (14)
= - D= .

r dr r dr

The subscripts 1 on these imply that the argument of the potdiitigl is replaced by-.
The fourth-order sum rule of the LSAC function is defined as

Sy = (SOOI (0)i=o (15)
where J**(¢) is the second time derivative of*(¢). The final expression fon?j1 involves
the static pair, the triplet and the quadruplet contributions and is given as

,  Amn
%= 15

kgT\? [
<) / dr g(r)r?[54(kpT)?(Dr* + 10Cr? + 154)
m 0
+kpT (189082 + 150442 + 23404 Br? + 216BCr* + 324Ar® + 18C%r8)
+2r?(5B°% + 9ab’r? + 9A?Br* + 3A%%)]
k T 2 00 (o) 1
+87%n° (11;"2 /0 dr /o drq /71 dBy ga(r, r1)
xr?rilksT (1059B By + 3BA1ry + 3AA1r?r{ (67 + 1) + 3AByr?)
+30(3B1Cr* 4+ 154 B1r? 4+ 3A1Cr*r2p2 + AA1r?r2(967 + 2)
+12r7181(3B1Cr? + 15ABy + CA1B1r®r2 (287 + 1) + 11AAyr?)
+3(CC1rr2 2287 + 1) + 2A1Cr*r2(862 + 1) + AA1r2r2(2862 + 9)))
+r(r + 4B1r1)(BAA1B1r* + 6ABB1r? + 5B2B1)
+rA1B2(r3B1 + 12rr2(287 + 1)) + 2A%r5r2B1(3B1r + 4r1(267 + 1))
+2Ar3 A1r1B1B(3B1r + 4r1(267 + 1))
—15r2BB1By + BA1Bo(3r2 + r?(28% + 1)) + 3B2r* A1 ABor?
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+BA1AprZrofa(31r® — 3rd) — rrira(Ba + 2B183) — 6rirafs)
+B1Bor* AA1A2r?ri (583 — 2P1B2) + BB1Ar?(3B5r5 + rZ(1— )]

2
kBT</ dr r4g(r)(3Ar2+SB)) (nn/ dr rzg(r)(ArZ—i—SB)) .
15 0 3 0
(16)

The last term in equation (16) represents the approximate four-body contribution in terms
of the static pair correlation function. The method of expressing the quadruplet contribution
in terms of static pair contribution has already been explained in our earlier work [8, 9].
In the above equation, = |r; — r| and the subscripts 2 oA, B and C imply that the
argument of the potentidl (r) is changed to,. Further,8;, 8, and B3 are cosines of the
angles betweem andr;, betweemnr andr, and betweenr; and r,, respectively. These
expressions for the sum rules of the longitudinal stress correlation function are expected to
be quite useful in the study of the LSAC functions and hence for the longitudinal and bulk
viscosities.

3.2. Bulk stress autocorrelation function

The expressions for the sum rules of the BSAC functions can also be obtained in a similar
way. The results obtained for these are given below. The expressions for the zeroth-order
sum of the BSAC function is given as

8 27 00
= é(kBT)z + TnkBT/ dr r*g(r)(Ar? — B) — (PV)?
0

122% _ dpP 3
+( V=) BksT)? — E? 5V—_kT2+2PV2 (E—k T)
< dE)((B ) ) — (kgT) T B

2
17)
The expression for the second-order sum rule is obtained to be
4 00
s§ = g(kBT)Z/ dr r2g(r[(BCr* + 4547 + 45B) + r®(ks T) " (Ar? + B)?]
m
kgT
+872n 2( 5 ) dr/ drlf dpy ga(r, r)r2r2(kpT) ™
xrrl,B(AAlr r1 + BAlr1 + AB1r? + BBy). (18)
The expression for the fourth-order sum rule of the BSAC function is given by
4 kpT
SE = ’;”( 5 ) / dr g(r)r?[18(ksT)?(Dr* + 10Cr? 4 15A)

+kpT (390B? + 432A%r* + 6204 Br? + 72BCr* + 1084Cr® + 6C?r®)
+2r%(B + Ar®)® — 4B%7]
keT o0 00 1

1822200 ) dr/ s [ dpsgatr,r
xr "12[(63(3331 + BAyr? + AA1r?r2p2 4+ AByr?)
+18(B1Cr* + 5AB1r? + A1Crr2 2 + AA1rr? (27 + 1)
+8rr11(B1Cr? +5ABy + CA1B1r%r? + 5AA1r?)
+3r2r2(CC1r2r2 B2 + A1Cr2(287 + 1) + A1Cr?(287 + D)+ AAL(4B2 + 7))
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+kpT ~Y[4rrip1(2AA1Br?r? + ABBir? + B?By) + A1 B%r?
+2A%A1r*r? + BAB1ro + A?Bir®) + ra(Ar? + BYX(AvriB? + Bo)
—%[I‘ZBB]_BZ + BAlerf}”Zﬂjz_ + ﬂ12r4A1ABzrf + BAlAzrfrzzrzﬂgﬂlﬂz

+B1Bar* AA1A P r2(2Bs — B1B2) + BB1Ar*Bir:
—l—ABler4 + AB{A — 2r4r22 32]] (19)

However, we note from equations (1), (6) and (8) these these sum rules can also be obtained
from knowledge of the sum rules &f (r) and S°(¢). The relation between them is

Sg;: = Sén - %Sén (20)

where the subscript2represents the order of the sum rule. Since we have already derived
the sum rules of the TSAC function, we can check the validity of equation (20). It is found
that equation (20) can be used to derive the expressions for the sum rules of the BSAC
function by knowing the sum rules of the longitudinal and transverse stresses. The validity
of equation (20) also suggests the equivalence of equations (1) and (6) for the calculation of
the bulk viscosity. Here, it may be noted that equation (20) is not apparent unless angular
integration is completed. In the next section we derive expressions for the time evolution
of the BSAC and LSAC functions and two viscosities using the Mori memory function
formalism.

4. Theory

The time evolution of the stress autocorrelation functions is of fundamental importance in the
study of relaxation of the momentum current fluctuations and in predicting the viscosities.
The exact evaluation of the time evolution of any TCF is not yet possible except for a very
simplified description of atomic motion. However, it has been shown by Mori that TCFs
obey an equation of motion which determines their time evolution and is given by

ds@)
dr

whereS(¢) is the stress autocorrelation function avfe(z) is the first-order memory function
defined as

+ / S(t)My(t —t)dr =0 (22)
0

Mi(t) = (1) £ 0) /(| f1(0)]?) (22)

where

fi(t) = expliQ1L Q1) O1J.
The operatorQi(= 1 — P1) projects onto the subspace orthogonal to the varidiote
andL is a Liouville operator. In order to calculate the time evolution of the autocorrelation
function from equation (21), the fundamental theoretical quantity needed is the memory
function My (). Since exact microscopic calculation df;(¢) is not yet possible, several
phenomonological forms for it have been proposed in the literature. In the present work we
follow our earlier work [7-10] and use

M (t) = a sechibr) (23)
wherea = M1(t = 0) = 8, = S»/So andb? = 8, = S4/S» — S»/So. This memory function
is a solution of the non-linear equation given as

oMy (1)

dr2

2 2b2 3
—bPMy) + 5 M) =0 (24)
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which is derivable [12] from the Mori equation of motion using two approximations.

The memory function given by equation (23) tends to a Gaussian and a simple
exponential for short and long times, respectively. The analytical results [13] obtained
for the TCF using the hyperbolic secant memory function has demonstrated the effect of
the non-linearity reflected through equation (24) of the atomic motion on the time evolution
of the autocorrelation function. The merits and demerits of the hyperbolic secant memory
function have recently been investigated by lezal [14].

Defining the Fourier—Leplace transform as

S(w) =i / explior)S(r) dr. (25)
0
The power spectrum of the stress autocorrelation function is given as
S’ (w) = 2/ coSwt)S(¢) dt (26)
0

where S”(w) is the imaginary part of(w) and is obtained to be
So

S ) = M@+ (M @)

(27)

M; and M7 are the real and imaginary parts, respectively, of the memory fundfigiv)
and are given as

M (w) = (wa/2b) sechwr /2b) (28a)

;L Ta T a 1+iw 1-iw
Mi@) = 3 tanh(E) +3 [Lp< 0 > - lIJ( 5 )} . (28b)
In the above equationy(x) is the Euler psi function.
The time dependence ¢f(¢) is obtained from the relation

and

1 [o¢]
Sit) == / coSwt)S" (w) dt. (29)

T Jo
The Green Kubo expression combined with equation (25) provides a general expression for
the viscosity which is given as
i
~ VksT
Using equations (27) and (28) and valuesuadnd b, we obtain

2n [,
= So.| <. 31
"= o s, (31)

This expression will be used to calculate the longitudinal and bulk viscosities by using the
corresponding values of the sum rules.

n S(w = 0). (30)

5. Calculations and results

In this section we present results for the time evolution of the LSAC function and
longitudinal and bulk viscosities.
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5.1. Longitudinal stress autocorrelation function and longitudinal viscosity

The input for the calculation of the sum rules of the LSAC functions consists of the
interaction potentiall/ (), the static pair correlation function and the triplet correlation
function. ForU(r) we use the LJ potential which is representative of the inert fluids.
The static pair correlation function has been calculated using the method of Sung and
Chandler [15] based on optimized cluster theory. Tgis) has been found [16] to be in

good agreement with the MD data obtained for the LJ potential. For the triplet correlation
function we have used a Kirkwood superposition approximation. This approximation has
been tested and has been found [17, 18] to be suitable for the evaluation of the sum rules.
The numerical integration has been done using the Gauss quadrature method. The accuracy
of our numerical work is better than 5%. In order to see the relative importance of two- and
three-particle contributions to the sum rule, we have presented these separately in table 1
for various reduced densities’ = no® and temperature$* = kT /e; o ande are two
parameters of the LJ potential of dimensions length and energy, respectively. In table 1 and
in what follows, S! = represents thei-body contribution to therth sum rule of the LSAC
function. It can be seen from table 1 that the three-body contribution is quite appreciable.
It is noted that the ratio of the static triplet contribution to the static pair contribution to
the second- and fourth-order sum rules increases with increase in density and decrease in
temperature. Near the triple point this ratio has been found to be about 50%. Here it may
be noted that in the present work we have ignored the terms in the zeroth-order sum rules
which appear as a result of energy fluctuations because of complication involved in the
calculation of &/ dE.

Table 1. Values of the sum rules of the LSAC functions},,, represents the:-body contribution
to thenth-order sum ruleSo, S> and S, are in units ofs?, £3/mo? ande*/m%4, respectively.
¢ ando are two parameters of the LJ potential.

T* n* S Shyx107%  Shyx 1072 S, x10°  Shyx10°®
0.730 0.844 6046  31.95  —1495 53.89 —20.36
1.000 0720 6655  40.77  —1180 94.60 —19.80
1.230 0419 4215  26.99 -353 76.50 -7.32
1190 0584 59.83  39.41 -757 108.05 —14.95
1160 0.844 11307  90.80  —36.06 24357 —7254
1.830 0500 8952 8116  —1112 347.78 —34.76
1.810 0600 11453  109.44  —1915 463.80 -58.30
1.810 0700 146.74  153.88  —3437 650.44  —10371
1.840 0743 16545 18681  —46.24 798.46  —14186
2500 0500 14213  168.96  —2240 928.51 -92.38
2500 0.600 183.31  236.64  —3949 129520  —16292
2560 0.743 25848 40821  —9561 2268.90  —39121
2500 0.803 27646  478.85 —13014 2599.30  —52160
3460 0500 228.83 33632  —4485 252220  —23802
3410 0.600 286.99  480.06  —79.22 3603.80  —42043
3500 0.700 366.60 714.39  —147.69 5514.30  —78556
3540 0.803 436.54 104250 —27208 8149.00  —143700
4530 0.600 433.88 94373  —14938 9802.40 103300

4450 0.700 514.02 1262.40 —24953 12840.00 —166Q020
4450 0.803 59591 1783.00 —44001 18146.00 —2867.30

The time evolution of the normalized LSAC function determined from equations (29)
and (27) is plotted in figure 1 for seven thermodynamic states. In figuedsabd 1€)
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Figure 1. Variation in the normalized LSAC function with time&.

we have studied the effect of density on the time developmerf@j. It is seen that

the effect of density is quite significant. The effect of increase in density on the time
developments of;(r) determine the importance of correlated collisions in determining the
longitudinal viscosity. From our work on the shear viscosity we noted that the influence of
correlated collisions was small for the shear viscosity. The longitudinal viscosity is the sum
of the shear and bulk viscosities; therefore it seems that the effect of correlated collisions is
more on the bulk viscosity than on the shear viscosity. This also suggests that the density
dependence of bulk viscosity is stronger than the linear dependence. In figlingelhave
studied the effect of temperature on the development of the LSAC function. The repulsive
part of the interaction potential becomes relatively more important at higher temperatures.
Therefore, from figure 1) we found that the effect of the attractive part of the potential is
also important in determining the longitudinal viscosity.
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The longitudinal viscosity of the LJ fluids is calculated from equation (31) using the
values of the sum rules from table 1. The resultsfpr= no?(me)~Y2 are presented in
figure 2 for six isotherms. In figure 2 the full curves are results obtained from equation (31)
and the MD results of Heyes [1] foy, = gn + np are shown as full circles. From figure 2,
it is seen that our theory provides good agreement of the longitudinal viscosity with the
MD data.

In order to see the relative importance of three- and many-particle contributions in
estimating the longitudinal viscosity, we calculate it from equation (31), neglecting these
contributions to sum rules. This is denoted #jy and is presented in table 2 for various
densities and temperatures. We also present the resulig” abtained including all
contributions together with the MD results of Heyes. From table 2 we note that the effect
of triplet and quadruplet correlations on the longitudinal viscosity increases with increase in
density. It is also noted that the triplet contribution in estimating the longitudinal viscosity
is between 15 and 55%.

Table 2. Values of the longitudinal viscosity for various values of the reduced densitiesid

T*. ’77(2) represent the longitudinal viscosity obtained from equation (31) by including only pair
contributions to the sum rulesy/ is the longitudinal viscosity obtained by including pair as
well as triplet contributions to the sum rules;(MD) represent the MD data of Heyes [1].

T* n* N n; (MD)

0.733 0.844 287 651 551
1.23 0.419 0.67 080 0.71
1.16 0.844 283 556 5.01
181 0600 145 186 1.64
1.81 0.700 1.94 272 247
1.84 0.743 211 3.09 3.05
2.50 0.500 1.00 150 —

2.56 0.743 191 273 291
3.46 0500 111 134 098
3.41 0.60 147 1.86 1.68
3.54 0.803 195 298 3.40
4.53 0.600 152 192 1.96
4.45 0.700 1.84 249 235
4.45 0.803 1.94 290 3.39

5.2. Bulk viscosity

The sum rules of the BSAC function is obtained by knowledge of the sum rules of the
LSAC and TSAC functions and using equation (20). The expressions and numerical value
of the sum rules of the TSAC function are given in our earlier work. Using those values
and the values given in table 1 for the LSAC function we obtain the values of the sum rules
of the BSAC function. The results obtained are given in table 3 for various densities and
temperatures. In table 32 represents the:-body contribution to theith sum rule. From
table 3 it is seen that the triplet contribution is quite significant. It is about 50% for the
second- order sum rules whereas it is about 60% for the fourth-order sum rule at the triplet
point. It decreases with increase in temperature and decrease in density.

The bulk viscosity is calculated from equation (31) using the values of sum rules from
table 3 is given in table 4 in the fourth column for various valueg*oind 7*. The third
column shows the results obtained fgy calculated for the relation}, = n; — 53‘77§ using
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Figure 2. Variation in the longitudinal viscosity with density at various temperatures: ——, our

results; ®, results of the MD simulation of Heyes.

the values ofy; obtained in the previous section anl from our earlier work which were
obtained using the same theory for the calculations. It is noted that the two results are quite
close to each other except for a few thermodynamic states. The simulation results for the
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Table 3. Values of the sum rules of the BSAC functiosi?, represents the:-body contribution
to nth-order sum rule. The units are the same as those in tab®*landn* are the reduced
temperature and density, respectively.

T* ot s¢ SHx107%  $E %103 sEx10° sfx10°®
0.73 0844 34407 16497 858 246 —144
123 0419 22190 13990  -212 39.1 -56
119 0584 32163 20370  —4.33 55.2 -110
116 0.844 60.323  46.773 —1950 124.8 -50.2
1.83 0500 47.813 44000 -6.75 188.3 -27.6
181 0.600 61450  59.453  —1109 253.8 —44.7
181 0700 77.833  84.067 —1898 353.9 ~764
184 0743 86.303  102.623 —2511 4347 —1030
250 0500 76530  94.627 1441 496.3 -751
250 0600 97.070  130.893 —2393 676.0 —1267
256 0743 128.880 226570 —54.33 1181.0 —2886
346 0500 119.403  176.937 —2898 1263.9 —1919
341 0600 148.363  263.913 —4958 1922.0 -3321
350 0.700 180577  394.363 —8848 2971.4 -597.1
354 0803 191.247  577.967 —15599 4426.1 —6400
453 0.600 219.720 544.943 -96.33 5835.1 —8344
445 0700 247.020  728.640 —15373 76289  —12911
445 0.803 252550 1034.937 —25953 10879.9  —21348

bulk viscosityn} (MD) [1] are given in the sixth column of table 4 for comparison. It can

be seen from the table that our results are in reasonable agreement with the simulation data
except for the density close to the triple-point density (0.844) where our results are rather
different. In order to search for the reason for the difference between our values and the
simulation values, we have calculatefl from the relationn; — 3n% using the simulation
values ofn. This will avoid the error introduced using the theoretical value of the shear
viscosity. For example, the result obtained at the triple point is now 2.47 compared with
3.92 obtained using the theoretical value of the shear viscosity. Comparing these results
with the simulation result (1.47) we see that the results obtained now are certainly better.
Finally in the fifth column we have studied the effect of three- and four-body contributions

in determining the bulk viscosity. In table 43, represents the bulk viscosity obtained

from equation (31) including only the pair distribution contribution to the sum rules. It

is found that the effect of the triplet contribution is a maximum at the triple-point density
and it decreases with decrease in density and increase in temperature. It is also noted that
N2 IS surprisingly close tej; (MD). However, this should not imply that the multiparticle
corrlations are not important for determining the bulk viscosity.

The theoretical results fon} which are given in the fourth column of table 3 are
compared with MD simulation data in figure 3. From the figure it is seen that, although
our results the close to the MD results, the curvature of theoretical curves, foersusn*
changes gradually from concave to convex with increasg*in MD data are not always
sufficient to show a linear dependencegf on n*. It may be recalled thah} varies as
n*? for dilute gases. It is also known that other transport coefficients do show a non-linear
dependence on density. The difference in variation of our calculgiettom MD data
could be due to the neglect of energy fluctuation terms in the sum rules, which is probably
important at high temperatures and densities, or due to the inadequacy of our model memory
function.
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Table 4. Values of the bulk viscosities.n}; represents the bulk viscosities obtained from
equation (31) obtained using all the contributions to the sum rules taken from tabjgd;.

is obtained by including only two-body contribution to sum rule$.(MD) represents the MD
data of Heyes.n}; given in the third and seventh columns are obtained by taking theoretical
values of longitudinal viscosity given in table 2 (fourth column) and the theoretical and MD
values of the shear viscosities, respectively.

(A my=0n—319 np  nhy np (MD) = (nj— 3n5(MD))
0.733 0.844 3.92 3.59 1.682 1.47 2.47
1.23 0.419 043 0.43 0.355 0.36 0.46
1.19 0.584 0.96 0.96 0.723 0.78 0.94
1.16 0.844 0.299 2.96 1.568 1.55 2.09
1.83 0.500 0.635 0.635 0.524 0.52 0.65
1.81 0.600 0.981 0.980 0.770 0.78 0.99
1.81 0.700 1.336 1.342 0993 1.05 1.29
1.84 0.743 141 1.44 1.030 1.25 1.29
2.50 0.500 0.602 0.603 0499 — —
2.50 0.600 0.852 0.855 0.679 0.77 0.82
2.56 0.743 1.032 1.105 0.796 1.18 1.00
3.46 0.500 0.691 0.687 0.558 0.48 0.82
341 0.600 0.883 0.889 0.693 0.82 0.99
3.50 0.700 1.015 1.057 0.770 0.98 1.08
3.54 0.803 0.894 1.03 0.622 134 0.90
453 0.600 0.840 0.866 0.678 0.72 0.67
4.45 0.700 0.906 0.991 0.727 1.02 1.15
4.45 0.803 0.532 0.856 0.567 1.50 0.90

5.3. Low-density limit

It is of interest to point out that our theory gives a non-zero value of longitudinal viscosity
in the low-density limit. UsingP = 2E/3V andE = 3NkT/2 for a dilute gas, it is found
that in then — O limit

So = 5(ksT)? + O(n) (32)
S, = Fin (33)
S} = Fon (34)

whereF; and F;, are independent of densities and depend on the temperature and interatomic
potential. Their explicit expressions can be easily obtained from equations (13) and (16)
with the understanding that() will have a low-density value. Substituting fsf, S, and

s, from equations (32)—(34) in equation (31), we obtain

2 16\ [ F»\Y?
m=_ksT)? <9) (F'g) (35)
1

which is clearly finite. Here it may be noted that our theory also predicts the density-
independent value of shear viscosity in the dilute gas limit.

It is also of great interest to study the dilute gas limit of the bulk viscosity as it is
known that the bulk viscosity is zero for an ideal gas. Employing the procedure used above
in deriving equations (32)—(34), it is noted that in the case of an ideal gas

(Jaa> =2E
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Figure 3. Variation in the bulk viscosity with density at various temperatures: ——, our results;
@, MD data of Heyes.
and

_ 1 > AL
nB_QVkBT;;/O d’<(m‘m)(m =) (36)

which clearly vanishes. This result can also be obtained from the sum rules of BSAC
function given in section 3.2. It is noted from equation (17) that, for a non-interacting gas,
S§ vanishes, which in turn results in a zero values of the bulk viscosity.

On the other hand, for the — O limit it is noted that

5% =nX, (38)
SE = nXs (39)
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where X1, X» and X3 can be obtained from equations (17)—(19) by using the dilute gas
value of g(r). Substituting equations (37)—(39) in equation (31), we obtain
2 n? Xi/z
== "1 /X3X;— X2 40

nB T ksT Xs 341 2 (40)
which predicts that) tends ton? in agreement with kinetic theory. Thus it is gratifying to
see that our approach reproduces the exact density dependence of these viscosities for an
ideal gas as well as those predicted for dilute and dense fluids.

6. Summary and conclusion

In this paper we have derived expressions for the sum rules of the LSAC and BSAC
functions. These have been evaluated numerically for the LJ potential for various densities
and temperatures. These results for the sum rules and Mori memory function formalism
have been used to study the time evolution of the LSAC and BSAC functions and the
corresponding viscosities. By studying the density and temperature dependences of these
we have found that both correlated collisions and the attractive part of the potential play
important roles in determining the bulk viscosity and hence the longitudinal viscosity. We
have found that our theory provides good agreement of the longitudinal viscosity with the
simulation results. The results for bulk viscosity are generally in reasonable agreement with
the simulation data except for a few thermodynamic points where they are not. Our theory
also predicts the exact low-density limit of bathand .
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